Link Ads

More search type here...

December 8, 2017

Audio Player dengan Arduino

Hardware Required

  • Arduino Due Board
  • 8-ohm speaker or headphones
  • Arduino shield with an SD card with cs CS 4 (like the Ethernet shield)
Komponen tambahan untuk bagian audio amplifier:
  • LM386 (low power audio amplifier)
  • 10 kohm potentiometer
  • 10 ohm resistor
  • 2 x 10 µF capacitor
  • 0.05 µF (or 0.1 µF) capacitor
  • 250 µF capacitor 
Skema

















File Audio File

File audio disimpam di SD card format file .wav  misal diberi nama (test .wav) frek sampling 44100 Hz, 16-bit stereo quality.

Code Program:
/*
  Simple Audio Player

 Demonstrates the use of the Audio library for the Arduino Due

 Hardware required :
 * Arduino shield with a SD card on CS4
 * A sound file named "test.wav" in the root directory of the SD card
 * An audio amplifier to connect to the DAC0 and ground
 * A speaker to connect to the audio amplifier

 Original by Massimo Banzi September 20, 2012
 Modified by Scott Fitzgerald October 19, 2012
 Modified by Arturo Guadalupi December 18, 2015

 This example code is in the public domain

 http://www.arduino.cc/en/Tutorial/SimpleAudioPlayer

*/


#include <SD.h>
#include <SPI.h>
#include <Audio.h>

void setup() {
  // debug output at 9600 baud
  Serial.begin(9600);

  // setup SD-card
  Serial.print("Initializing SD card...");
  if (!SD.begin(4)) {
    Serial.println(" failed!");
    while(true);
  }
  Serial.println(" done.");
  // hi-speed SPI transfers

  // 44100kHz stereo => 88200 sample rate
  // 100 mSec of prebuffering.
  Audio.begin(88200, 100);
}

void loop() {
  int count = 0;

  // open wave file from sdcard
  File myFile = SD.open("test.wav");
  if (!myFile) {
    // if the file didn't open, print an error and stop
    Serial.println("error opening test.wav");
    while (true);
  }

  const int S = 1024; // Number of samples to read in block
  short buffer[S];

  Serial.print("Playing");
  // until the file is not finished
  while (myFile.available()) {
    // read from the file into buffer
    myFile.read(buffer, sizeof(buffer));

    // Prepare samples
    int volume = 1024;
    Audio.prepare(buffer, S, volume);
    // Feed samples to audio
    Audio.write(buffer, S);

    // Every 100 block print a '.'
    count++;
    if (count == 100) {
      Serial.print(".");
      count = 0;
    }
  }
  myFile.close();

  Serial.println("End of file. Thank you for listening!");
  while (true) ;
}

Menggerakkan Servo Motor dengan Setting Potensiometer

Hardware Required

  • Arduino or Genuino Board
  • Servo Motor
  • 10k ohm potentiometer
  • hook-up wires 
Skema

CODE:
/*
 Controlling a servo position using a potentiometer (variable resistor)
 by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>

 modified on 8 Nov 2013
 by Scott Fitzgerald
 http://www.arduino.cc/en/Tutorial/Knob
*/


#include <Servo.h>

Servo myservo;  // create servo object to control a servo

int potpin = 0;  // analog pin used to connect the potentiometer
int val;    // variable to read the value from the analog pin

void setup() {
  myservo.attach(9);  // attaches the servo on pin 9 to the servo object
}

void loop() {
  val = analogRead(potpin);            // reads the value of the potentiometer (value between 0 and 1023)
  val = map(val, 0, 1023, 0, 180);     // scale it to use it with the servo (value between 0 and 180)
  myservo.write(val);                  // sets the servo position according to the scaled value
  delay(15);                           // waits for the servo to get there
}


Ping Ultrasonic Range Finder

Hardware Required

  • Arduino or Genuino Board
  • Ultrasonic Range Finder
  • hook-up wires 
  • The SEN136B5B is an ultrasonic range finder from Seeedstudio. It detects the distance of the closest object in front of the sensor (from 3 cm up to 400 cm).

Circuit

 

CODE

/*
  Ping))) Sensor

  This sketch reads a PING))) ultrasonic rangefinder and returns the distance
  to the closest object in range. To do this, it sends a pulse to the sensor to
  initiate a reading, then listens for a pulse to return. The length of the
  returning pulse is proportional to the distance of the object from the sensor.

  The circuit:
 - +V connection of the PING))) attached to +5V
 - GND connection of the PING))) attached to ground
 - SIG connection of the PING))) attached to digital pin 7

  created 3 Nov 2008
  by David A. Mellis
  modified 30 Aug 2011
  by Tom Igoe

  This example code is in the public domain.

  http://www.arduino.cc/en/Tutorial/Ping
*/

// this constant won't change. It's the pin number of the sensor's output:
const int pingPin = 7;

void setup() {
  // initialize serial communication:
  Serial.begin(9600);
}

void loop() {
  // establish variables for duration of the ping, and the distance result
  // in inches and centimeters:
  long duration, inches, cm;

  // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
  // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
  pinMode(pingPin, OUTPUT);
  digitalWrite(pingPin, LOW);
  delayMicroseconds(2);
  digitalWrite(pingPin, HIGH);
  delayMicroseconds(5);
  digitalWrite(pingPin, LOW);

  // The same pin is used to read the signal from the PING))): a HIGH pulse
  // whose duration is the time (in microseconds) from the sending of the ping
  // to the reception of its echo off of an object.
  pinMode(pingPin, INPUT);
  duration = pulseIn(pingPin, HIGH);

  // convert the time into a distance
  inches = microsecondsToInches(duration);
  cm = microsecondsToCentimeters(duration);

  Serial.print(inches);
  Serial.print("in, ");
  Serial.print(cm);
  Serial.print("cm");
  Serial.println();

  delay(100);
}

long microsecondsToInches(long microseconds) {
  // According to Parallax's datasheet for the PING))), there are 73.746
  // microseconds per inch (i.e. sound travels at 1130 feet per second).
  // This gives the distance travelled by the ping, outbound and return,
  // so we divide by 2 to get the distance of the obstacle.
  // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
  return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds) {
  // The speed of sound is 340 m/s or 29 microseconds per centimeter.
  // The ping travels out and back, so to find the distance of the object we
  // take half of the distance travelled.
  return microseconds / 29 / 2;
}